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We propose a phase compensation method to deal with the phase twist of Laguerre-Gaussian (LG) beam. Theoretical 
analysis of the electric field expression allows the separation of the exponential term responsible for phase twist. For LG 
beam and a certain propagation distance, phase compensation is modulated and applied to the initial beam. Numerical 
calculations were conducted, comparing the evolution of LG beam without phase compensation and tat with compensation. 
The compensation method effectively addresses to the problem of phase twist during the transmission of LG beams, 
offering significant value for fields such as communication, imaging, and quantum sensing. 
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1. Introduction 
 

Laguerre-Gaussian (LG) beam is a typical vortex 

beam, which has spiral phase profile and orbital angular 

momentum (OAM) [1–3]. The methods for effectively 

generating an LG beam are to direct a Gaussian beam onto 

a phase plate or spatial light modulator, and the emitted 

beam is the LG beam [4–6]. LG beam is widely used in 

the fields of communication, imaging and quantum 

sensing [7–9]. OAM rotates around the propagation axis, 

with the phase factor related to the topological charge l 

[10–12]. The topological charge plays a significant role in 

the generation, transmission, and dynamics of vortex light 

fields. 

In recent years, many research works paid attention 

around the LG beam. Liu et al. demonstrated the 

generation of perfect optical vortices using LG beams, 

emphasizing the stability of their properties [13]. The 

study also extended the method to vector beams and 

explores applications in optical tweezers and high-capacity 

communications. Rasouli et al. presented a robust 

experimental method for characterizing LG beams using 

diffraction patterns, which simplifies the analysis of beam 

topological charge and radial index [14]. Both 

experimental and simulation results confirmed the 

accuracy and efficiency of the method. Kotlyar et al. 

theoretically demonstrated that the total topological charge 

of superposed LG beams equals the charge of individual 

beams under specific conditions [15]. Phase delays 

between beams can alter the total topological charge. Pan 

et al. investigated the mode purity of Gaussian vortex 

beams modulated by spiral phase plates [16]. The finding 

suggested that LG beams with lower topological charges 

maintain higher mode purity during propagation. Luo 

explored twisted anisotropic electromagnetic LG beams, 

revealing that manipulating beam anisotropy, topological 

charge, and twist factor allows for engineering unique 

coherence and polarization patterns [17]. These findings 

had implications for fields like optical communications. 

Kotlyar et al. investigated the superposition of two LG 

beams, deriving relationships for complex amplitude in the 

Fresnel diffraction zone [18]. The beams demonstrated 

unique properties that could be useful for information 

transmission and optical communication. 

As mentioned above, extensive research on LG beams 

has been conducted from various perspectives, including 

mode stability, phase delay, non-local effects, and optical 

computing. However, it is generally assumed that the 

phase of vortex beams remains stable during transmission, 

and there has been little theoretical research on the 

transmission of beams over long distances. As the 

transmission distance increases, the phase of the LG beam 

undergoes distortion, making it difficult to distinguish the 

OAM. However, with the growing research on vortex 

beams in communication, imaging, and quantum sensing, 

the demand for long-distance transmission of vortex 

beams and the need for OAM transmission stability have 

increased. Therefore, maintaining the phase of LG beams 

after long-distance transmission is crucial. 

To solve the problem of phase twist and 

indistinguishable OAM after the long-distance 

transmission of LG beams, we propose a phase 

compensation method for phase distortion over a specified 

transmission distance by modulating the initial beam. 

Starting with the physical principles of LG beams, the 

electronical field of LG beam during propagation is 

derived by the diffraction integral. The exponential term of 

phase twist is separated. Aiming at the phase twist term, 

we perform phase modulation on the initial beam to apply 

targeted compensation for the twisted phase. This 

approach ensures that, after transmission, the isophase 

lines remain straight, allowing for clear distinction of the 
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OAM. Simulations of LG beams with various parameters 

were then performed, confirming the effectiveness of the 

phase compensation method proposed in this study. This 

method is also applicable to cases involving negative 

topological charges. The approach outlined in this paper 

advances the development of LG beams in fields such as 

communication, imaging, and quantum sensing, with 

significant implications for both theoretical and practical 

applications of vortex beams. 

 

 

2. Theoretical analysis of LG beam 
 

This section describes the theoretical analysis of LG 

beam. First, the propagation characteristic of LG beam is 

introduced. Then, the phase compensation method is 

explained. 

LG beam is a typical vortex beam. By modulating the 

input Gaussian beam by a phase plate or spatial light 

modulator, the output beam becomes a LG beam. At the 

cross-section plane where the transmission distance is zero, 

the electric field of the LG beam in the cylindrical 

coordinate system (r, Φ) is 
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where E0 is the normalized electric field strength 

coefficient, ω0 is the size of the input beam, l is the 

topological charge. 

From the perspective of the transmission direction, the 

beam consists of rays diverging from the transmission 

origin. From the cross-section plane along the transmission 

direction, the isophase surfaces of the LG beam exhibit a 

spiral structure. According to the diffraction integral, the 

electric field E(r, z) at a transmission distance of z is 
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where k is the wave number. 

Transform Eq. (2) into the Cartesian coordinate system, 

expressed as 
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where x0 and y0 are the coordinates on the initial plane, and 

x and y are the coordinates on the plane with propagation 

distance of z. 

Let X=x0+ikx/[2z(1/ω0
2
-ik/2z)], Y=y0+iky/[2z(1/ω0

2
-

ik/2z)], Eq. (3) is transformed as 
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Performing the integration of the Eq. (4), we obtain   
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Eq. (5) is the analytic expression of the electronic 

field of LG beam after the propagation distance z. By 

changing the value of topologic charge, we can the 

propagation evolution of LG beams of any order.  

We transform Eq. (2) into an expression similar to Eq. 

(2), as 
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From the first exponential term in Eq. (6), it can be 

observed that as the transmission distance increases, the 

beam size expands due to diffraction. The second 

exponential term illustrates the topologic charge remains 

the same as the beam propagates. However, the third 

exponential term shows that the phase distribution changes 
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after propagation. This leads to phase twist. As the 

topological charge of the initial vortex beam changes and 

the transmission distance increases, the phase becomes 

indistinguishable as the distance increase. This results in 

the inability to identify the topological charge. Phase twist 

during vortex beam transmission poses a significant 

obstacle to research and applications in communication, 

imaging, and sensing. 

The transmission distance is known in many 

applications of vortex beams in communication, imaging, 

and sensing. To solve this problem, it is possible to 

perform phase modulation on the initial LG beam. By 

compensating the phase, the beam can be transmitted to 

the target location with a distinguishable phase distribution. 

For a total transmission distance of Z, after phase 

compensation, the electronic field as distance z is 

expressed as 

 
2 2 2 2

1

0 2 4 2 2 2
2 4 40

0 0 02 4 2 4 2 4

0 0 0

4 2 2
( , ) ( ) 1 exp exp[ ]exp[ ]

4 4 4
1 1

exp

1

l

l z r i zr i Zr
E r z E i il ikz ikZ

k z z Z
k k

k k k




  
  


   

       
             

 
 
 
 
 


  
      

  (7) 

 

 

The fourth exponential term is the phase compensation 

term. It compensates the total phase twist of the LG beam 

propagating during the distance Z. In this way, the beam 

gets phase compensation, and the phase twist is suppressed. 

 
 
3. Results and discussions 
 

This section primarily covers two aspects: the first is 

the numerical calculation of the phase twist of LG beams, 

and the second is the simulation of LG beams after phase 

compensation. 

 
3.1. Phase twist of LG beam 

 

We perform the simulation with the parameters: 

Gaussian beam size ω0=10 mm, wavelength λ=532 nm, 

propagation d=100 m, topologic charge l=3. The initial 

intensity profile and phase profile are shown in Fig. 1(a) 

and (e). After propagating 100 m in air, the intensity 

profile and phase are shown in Fig. 1(b) and (f). LG beams 

have significant research and application value in fields 

such as optical communication, optical computing, and 

quantum sensing. Their advantage lies in possessing 

orbital angular momentum, with the phase factor 

expressed as exp(ilΦ), where l is the topological charge. In 

experiments, the phase is measured using interference 

methods, and the light field distribution of an LG beam 

exhibits a doughnut structure, with a singularity at the 

center, where the light intensity forms a dark region. As a 

result, it is not possible to effectively measure the phase at 

the center, and only the phase in regions of higher 

intensity can be measured. In the simulation shown in Fig. 

1(b) and (f), it can be observed that the topological charge 

at the center of the phase map can be distinguished; 

however, the overall phase distribution appears distorted, 

with isophase lines spiraling clockwise. This distortion is 

highly detrimental to assessing the topological charge of 

LG beams after long-distance transmission.  

 

 

 
Fig. 1. Intensity profile of: (a) l=3, z=0 m; (b) l=3, z=100 m; (c) l=7, z=0 m; (d) l=7, z=100 m. Phase profile of:  

(a) l=3, z=0 m; (b) l=3, z=100 m; (c) l=7, z=0 m; (d) l=7, z=100 m (colour online) 
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For LG beams with a larger topological charge, l = 7, 

and the other input beam parameters remain the same, the 

initial light intensity profile and phase profile are shown in 

Fig. 1(c) and (g). After traveling 100 m in air, the intensity 

and phase profile are depicted in Fig. 1(d) and (h). As the 

topological charge increases, the intensity dark region at 

the center of the beam becomes larger. Additionally, with 

the increase in topological charge, the isophase lines 

become more densely packed, and the phase distortion 

becomes more severe as the transmission distance 

increases. Therefore, there is an urgent need to investigate 

a method to resolve the issue of phase twist and the 

inability to distinguish the topological charge after long-

distance transmission of LG beams. 

 

 

 

 

3.2. Phase compensation 
 
Based on the phase compensation method in section 2, 

we perform the simulation. For the input LG beam with 

the topological charge of 3, the simulation parameters are: 

Gaussian beam size ω0=10 mm, wavelength λ=532 nm, 

propagation d=100 m. The beam intensity profiles at 0 m, 

20 m, 40 m, 60 m, 80 m, 100 m are shown in Fig. 2(a-f). 

The cross-sectional intensities are depicted in Fig. 2(g-l). 

The phase distributions are illustrated in Fig. 2(m-r). From 

the intensity profile, as the transmission distance increases, 

the beam size also gradually increases. Fig. 2(m) shows 

the phase compensation on the initial LG beam, which has 

counterclockwise spiraling isophase lines. After 

transmission during 0 m to 100 m in air, the spiral 

structure of the isophase lines gradually unwinds, and the 

isophase lines change to straight lines, which is easy to 

distinguish the topological charge after 100-m propagation. 

 

 

 
 

Fig. 2. Intensity profile of: (a) l=3, z=0 m; (b) l=3, z=20 m; (c) l=3, z=40 m; (d) l=3, z=60 m; (e) l=3, z=80 m; (f) l=3, z=100 m. 

Cross-section intensity profile of: (g) l=3, z=0 m; (h) l=3, z=20 m; (i) l=3, z=40 m; (j) l=3, z=60 m; (k) l=3, z=80 m; (l) l=3, z=100 m. 

Phase profile of: (m) l=3, z=0 m; (n) l=3, z=20 m; (o) l=3, z=40 m; (p) l=3, z=60 m; (q) l=3, z=80 m; (r) l=3, z=100 m (colour online) 

 

 

Furthermore, we perform the simulation of the beam 

with larger topological charge of 7 and shorter propagation 

distance, to explore the evolution of beam propagation. 

The simulation parameters are: Gaussian beam size ω0=1 

mm, wavelength λ=532 nm, propagation d=1 m. The 

simulation results are shown in Fig. 3. The beam intensity 

profiles at 0 m, 0.5 m, 0.9 m, 0.99 m, 0.999 m, 1 m are 

shown in Fig. 3(a-f). The cross-sectional intensities are 

depicted in Fig. 2(g-l). The phase distributions are 

illustrated in Fig. 3(m-r). From the intensity profile, as the 

transmission distance increases, both the beam size and the 

width of the light ring gradually increase. Fig. 3(m) shows 

the phase compensation on the initial LG beam, in which 

the isophase lines rotate counterclockwise around the 

optical axis. From Fig. 3(m) to (f), the revolution of the 

phase distribution shows the effect of phase compensation. 

Phase profile with larger topological charge is more 

twisted and complicated. As the propagation distance 

increases, the twisted phase is alleviated, and the isophase 

lines change from curves to straight lines, which is of great 

significance for accurately identifying the topological 

charge and orbital angular momentum. 
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Fig. 3. Intensity profile of: (a) l=7, z=0 m; (b) l=7, z=0.5 m; (c) l=7, z=0.9 m; (d) l=7, z=0.99 m; (e) l=7, z=0.999 m; (f) l=7, z=1 m. 

Cross-section intensity profile of: (g) l=7, z=0 m; (h) l=7, z=0.5 m; (i) l=7, z=0.9 m; (j) l=7, z=0.99 m; (k) l=7, z=0.999 m; (l) l=7, 

z=1 m. Phase profile of: (m) l=7, z=0 m; (n) l=7, z=0.5 m; (o) l=7, z=0.9 m; (p) l=7, z=0.99 m; (q) l=7, z=0.999 m; (r) l=7, z=1 m 

(colour online) 

 

 

The method proposed in this paper can be applied not 

only to positive topological charges but also extended to 

cases with negative topological charges. Compared to 

positive topological charges, negative topological charges 

give the phase an opposite spiral structure. In this section, 

we perform simulations of the LG beam evolution before 

and after phase compensation. LG beams experience phase 

distortion after long-distance transmission, making it 

impossible to distinguish the OAM. This is unacceptable 

for research and applications of vortex beams in fields 

such as communication, imaging, and quantum sensing. 

This paper proposes a phase compensation method based 

on the physical significance of LG beams, modulating, and 

compensating the phase of the emitted beam. The 

feasibility of this method has been verified through 

simulations, demonstrating that the LG beam can maintain 

a clear phase structure and distinguishable OAM even 

after long-distance transmission. This holds significant 

importance for research in cutting-edge physical 

technologies. 

 

 

4. Conclusions 
 

To address the issue of phase distortion and 

indistinguishable OAM after long-distance transmission of 

LG beams, this paper, based on the physical principles of 

LG beams, compensates for the phase twist over a specific 

transmission distance by modulating the initial beam. This 

ensures that, after transmission, the isophase lines remain 

straight, and the OAM can be clearly distinguished. 

Subsequently, simulations of LG beams with different 

parameters were conducted, and the results validated the 

effectiveness of the phase-compensation method proposed 

in this paper. This method can also be extended to cases 

with negative topological charges. The approach presented 

in this paper promotes the development of LG beams in 

research areas such as communication, imaging, and 

quantum sensing, and has significant implications for both 

the theory and application of vortex beams. 
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